Dr. Kersten Rabe - Molecular Evolution and Biocatalysis

Kersten works as a group leader as part of the Niemeyer Lab in the Institute for biological Interfaces 1 (IBG-1) in Karlsruhe focusing on biocatalysis and evolution.

In this context, various technologies and methods from the fields of microbiology, biochemistry, bioinformatics and microfluidics are used.

Evolution can act as a guiding principle and is applied to proteins (directed evolution) as well as to microorganisms (adaptive laboratory evolution). Furthermore rational protein engineering is employed to improve proteins.

Kersten also coordinates the BMBF funded cooperation project MicroMatrix and is co-chair of the focus field "Self-assembled, adaptive and biomimetic materials systems" in the KIT Center MaTeLiS.

Reflecting his broad research interests, he is a member of the GBM, VAAM, DECHEMA and ACS and has been involved in various outreach activities for example as part of exhibitions at the ZKM in Karlsruhe (Retooling Evolution: Nature at Work, 2015 and The Beauty of Early Life. Spuren frühen Lebens, 2022).

You can reach Kersten via email: kersten.rabe∂kit.edu and find him on Linkedin and Twitter (@RabeKersten).

Dr. Kersten Rabe Maximilian Grösche
Dr. Kersten Rabe

Publications

You can find the most recent list of all publications via:

Web of Science

Orcid

Publication statistics according to ISI Web of KnowledgeSM [search: Author = (Rabe Kersten S), all databases]: h-index: 19 with more than 1200 citations (as of Nov. 8th 2022)

 

Selected publications corresponding author


A Magnetosome-Based Platform for Flow Biocatalysis
Mittmann, E.; Mickoleit, F.; Maier, D. S.; Stäbler, S. Y.; Klein, M. A.; Niemeyer, C. M.; Rabe, K. S.; Schüler, D.
2022. ACS Applied Materials & Interfaces, 14 (19), 22138–22150. doi:10.1021/acsami.2c03337
Microfluidic Evolution-On-A-Chip Reveals New Mutations that Cause Antibiotic Resistance
Zoheir, A. E.; Späth, G. P.; Niemeyer, C. M.; Rabe, K. S.
2021. Small, 17 (10), Art.-Nr.: 2007166. doi:10.1002/smll.202007166
Surface Display of Complex Enzymes by in Situ SpyCatcher-SpyTag Interaction
Gallus, S.; Peschke, T.; Paulsen, M.; Burgahn, T.; Niemeyer, C. M.; Rabe, K. S.
2020. ChemBioChem, 21 (15), 2126–2131. doi:10.1002/cbic.202000102
A Phenolic Acid Decarboxylase-Based All-Enzyme Hydrogel for Flow Reactor Technology
Mittmann, E.; Gallus, S.; Bitterwolf, P.; Oelschlaeger, C.; Willenbacher, N.; Niemeyer, C. M.; Rabe, K. S.
2019. Micromachines, 10 (12), Article No.795. doi:10.3390/mi10120795
3D‐Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4‐Hydroxystilbene
Peng, M.; Mittmann, E.; Wenger, L.; Hubbuch, J.; Engqvist, M. K. M.; Niemeyer, C. M.; Rabe, K. S.
2019. Chemistry - a European journal, 25 (70), 15998–16001. doi:10.1002/chem.201904206
On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes
Maier, M.; Radtke, C. P.; Hubbuch, J.; Niemeyer, C. M.; Rabe, K. S.
2018. Angewandte Chemie / International edition, 57 (19), 5539–5543. doi:10.1002/anie.201711072
Improvement in the Thermostability of a β-Amino Acid Converting ω-Transaminase by Using FoldX
Buß, O.; Muller, D.; Jager, S.; Rudat, J.; Rabe, K. S.
2018. ChemBioChem, 19 (4), 379–387. doi:10.1002/cbic.201700467