The Ulrich group at KIT
Prof. Dr. Anne S. Ulrich holds the Chair of Biochemistry in the university section of KIT (Institute of Organic Chemistry, Campus South), and is head of the Department of Molecular Biophysics at the Institute of Biological Interfaces (IBG-2, Campus North) in the Helmholtz section. Our group runs facilities for solid-state NMR, synchrotron circular dichroism and other biophysical methods, as well as laboratories for peptide synthesis, protein biochemistry and microbiology. Our research activities are embedded in the Helmholtz programme BIF-TM (BioInterfaces in Technology and Medicine), where they are concerned with the development of "molecular tools for manipulating cells" and the "control and manipulation of bacterial biofilms". In teaching, we contribute mainly to the Bachelor and Master curriculum in Chemical Biology, but also to undergraduate courses in Chemistry and Biology.
Our specific research interests are focussed on biomembranes, which form a hydrophobic barrier around every cell. Our aim is to (i) characterize the molecular architectures involved in peptide-induced membrane permeabilization events, and (ii) to describe protein machineries that are responsible for the transport of material and information across membranes. This requires biophysical studies on protein-lipid interactions of amphiphilic peptides, and on the folding and self-assembly of transmembrane proteins. On this basis, we are rationally designing new and improved molecules to be used as leads for drug development and in biotechnological applications.
So far, we have characterized the structural behaviour of numerous membrane-bound antimicrobial peptides, biofilm-inducing agents, cell penetrating and fusogenic sequences, as well as signalling receptors and protein export machineries. For example, a set of fundamental rules was obtained, which govern the formation of stable transmembrane pores in lipid bilayers, both in terms of peptide features and lipid properties. We also discovered "charge zippers" as a novel structural motif in membrane proteins. This mode of electrostatic assembly can explain the detailed functional mechanisms, e.g., of transmembrane proton conduction by a bacterial stress response peptide, and of protein translocation through an export channel.
Method development includes the specific 19F-labelling of synthetic peptides and recombinant peptides for highly sensitive NMR observation. Both, CD and solid-state NMR experiments are carried out on macroscopically oriented samples, which yield anisotropic parameters. CD is available not only on bench-top instruments, but also on our in-house beamline at the KARA synchrotron, which we are operating as an international user facility. Fluorescence assays are used to monitor peptide-induced membrane fusion, the uptake of cell-penetrating peptides, and protein-protein interactions, supported by various other biophysical methods.
Further activities of the Ulrich department include, besides teaching and regular seminars (both, academic and public), also the organization of international conferences and annual retreats for young researchers, as well as a wide selection of training possibilites for PhD and master/bachelor students, research assistants, apprentices and highschool students.
Die Ulrich Gruppe am KIT
Frau Prof. Anne S. Ulrich hält den Lehrstuhl für Biochemie im universitären Bereich des KIT (Institut für Organische Chemie , Campus Süd) und ist geschäftsführende Direktorin des Instituts für Biologische Grenzflächen im Großforschungsbereich (IBG-2, Campus Nord). Ihre Abteilung betreibt Großgeräte für Festkörper-NMR und Synchrotron-Zirkulardichroismus, sowie Labore für Peptidsynthese, Proteinbiochemie und Mikrobiologie. Ziel ist es, die Funktionsweise von Peptiden und Proteinen in biologischen Membranen in strukturellem Detail zu erfassen, um die molekularen Mechanismen diverser Transportprozesse genauer erklären zu können.
Aktuelle Fragestellungen betreffen die Rolle der Zellmembran als hydrophobe Barriere und ihre Wechselwirkung mit Membran-aktiven Peptiden und Transmembran-Proteinen. Um die molekularen Vorgänge bei der Membranpermeabilisierung, der Membranfusion und beim Membrantransports zu erforschen, werden antimikrobielle und cytotoxische Peptide, zellpenetrierende und fusogene Sequenzen, sowie Proteinexportmaschinerien strukturell charakterisiert. Die Biomoleküle werden sowohl chemisch durch Peptidsynthese als auch rekombinant mit gentechnischen Methoden hergestellt, mit geeigneten NMR-Isotopen (19F, 2H, 15N, 13C) markiert, mikrobiologisch charakterisiert und in Membranen rekonstituiert. Die Strukturanalysen beruhen auf etablierten sowie neu entwickelten Festkörper-NMR Methoden, mit speziellem Fokus auf makroskopisch orientierte Proben und anisotrope 19F-NMR Parameter. Zur Datenauswertung werden Moleküldynamik-Simulationen unter Verwendung der experimentellen NMR Parameter eingesetzt. Neue Markierungsstrategien und der Eigenbau spezieller 19F-NMR Hardware ermöglicht die hochempfindliche Messung von biologischen Proben. Mit CD-Spektroskopie - auch an der Synchrotron Strahlenquelle KARA - wird die Konformation und Schräglage der oben genannten Moleküle in Modellmembranen bestimmt, per Fluoreszenz die Peptid-induzierte Membranfusion quantifiziert, oder auch die Aufnahme von zellpenetrierenden Peptiden in lebende Zelle verfolgt. Eine Vielzahl weiterer biophysikalischer Methoden steht am IBG-2 als Infrastruktur und für Kooperationspartner zur Verfügung.
Veranstaltungen der Abteilung Ulrich umfassen neben der Lehre und aktuellen Seminaren auch Konferenzen und Sommerschulen, sowie vielfältige Ausbildungsangebote für Doktoranden und Diplomanden, HiWis, Azubis und Schüler.